in News Departments > FYI
print the content item

RWE Power is testing new electrolysis technology from Siemens in order to store excess wind power.

The new system, which is currently being built at the Coal Innovation Centre in Niederaussem, Germany, comes with a proton exchange membrane (PEM) and enables electric power to be converted into hydrogen. The electrolysis system is located in a standard container and, after commissioning, is due to be tested from January to October of this year.

Building and testing the system are part of the CO2RRECT research project supported by the German Ministry of Economics and Technology. In addition to numerous research facilities, participants in the initiative include industrial partners like Bayer Technology Services, Bayer Material Science and Siemens.

For the project, experts are jointly examining how hydrogen can be produced from excess renewables-based electricity and carbon dioxide (CO2) utilized as a raw material.

The hydrogen produced by the electrolysis system can be deployed in various ways. Some of it can be used with CO2 from the power plant's flue gas to produce methane in the adjacent new catalyst test facility. As chemical energy in the form of natural gas, it can be placed in interim storage, and when required, the gas can be turned into electricity or made available to the heating market. Alternatively, the hydrogen can be used to make further chemical products, like methanol.

RWE Power's engineers are also examining how fluctuations in renewable energy sources can be offset by storing electricity. One part of the research focuses on investigating the effect of frequent load changes on the functioning of the electrolysis system and on the hydrogen quality obtained.

This is how the conversion of electric energy into hydrogen works: At the core of the new electrolysis technology is a PEM. In the electrolyser, this proton-permeable membrane separates the areas in which oxygen and hydrogen emerge. Fitted at the front and back of the membrane are precious-metal electrodes, which are connected to the positive and negative poles of the voltage source. The water is split at the electrodes.

Thanks to this membrane technology, PEM electrolysis can respond to the fluctuating electricity supply from renewable sources within milliseconds, RWE Power says, adding that such fast response times are achieved by combining the PEM's properties with innovative industrial control technology.



Trachte Inc._id1770
Latest Top Stories

Despite 2013 Challenges, U.S. Wind Power Reaches All-Time Low Price

In a new report, the U.S. Department of Energy details the highs and lows of the country's wind industry last year, and the agency maintains that the U.S. sector remains strong.


Mexico On Pace To Set New Renewables Investment Record

A new report says the country has spent $1.3 billion on clean energy in the first half of 2014 and could end up seeing a record year. Furthermore, wind power is slated for significant growth in the region.


IRS Issues More PTC Guidance, Easing Some Wind Industry Concerns

The Internal Revenue Service (IRS) addresses how much work is needed on a wind farm to satisfy production tax credit (PTC) eligibility.


Embryonic No More: U.S. Offshore Wind Industry Gaining Momentum

After a decade of fits and starts, the industry is moving closer to installing the first generation of wind projects off the country's shores.


AWEA: U.S. Installs 853 MW Of Wind In First Half Of 2014

The American Wind Energy Association (AWEA) reveals the U.S. industry's progress thus far this year and underscores the importance of policy certainty.

Canwea_id1984
Renewable NRG_id1934
Tower Conference_id1965